我国的水处理工业已经逐渐形成,每年的污废水处理量接近1000亿立方米(2018年达到817亿吨),约占用水量的15%(2018年为13.6 %),达到我国河流总径流量的3%左右(2015-2019年全国水资源量为(2.9±0.22)×1012 m3),取水量已经逼近警戒线,如果河流径流量的5%被取用,不管采用何种净化方式施以补水,都可能引发生态上的灾难。在水资源配置方面,我国的水资源总量拥有仍然属于丰沛,然而人口基数巨大,人均拥有量(2064 m3/人,2018年) 仅约占全世界平均值的1/3(6074 m3/人,2018年)。我国耗水的传统产业如钢铁、造纸、印染、化工等居多,加上经济发展的区域不均匀性,产业结构与人口聚集所造成的河流水质性污染普遍存在。我国很多省份特别是华北等地区已经出现了流域水资源严重超载的现象。 我国目前的人均GDP(10483美元,2020年)约为美国的1/6(63416美元,2020年),与世界发达国家比较,处在资源属性、人力战略与产业结构优化的上升期。水资源可能成为一个重要瓶颈,并将取决于我们的产业结构未来的发展变化。我们需要改变没有污染就没有环保产业的传统思路,把水资源战略置前,重新认识水的经济当量意义及其在实现碳中和过程中的媒介作用。在水工业中,水源是基础,污染是对象,工艺是手段,工程是目的,所有目的必须为可持续生态的目标服务;全过程的保护、预防、应用、控制、修复、循环等,构成了完备的水工业链。其中,在水资源—水环境—水生态—水工业的链条中,表现出多赋存状态、多相转变、多季节变化、多物种依存的资源属性;表现出复杂性、多样性、多环境效应等共存的污染对象;还表现出多学科、多方法、多技术的解决手段,以及多用途、多服务对象、多目标需求的社会经济行为。 这样,在认识水溶液或污废水性质基础上,我们把污废水处理工艺的重要性置身于难降解有毒工业废水的高效处理技术与理论中,是非常有必要的。难降解有毒工业废水传播/干预的行业构造了水质特征急剧变化并使之具有复杂性和典型性,其中污染过程是自发行为,阻断这个过程需要处理工艺的革新。工业废水与使用原材料、中间产物、产品途径、分离纯化等生产工艺及原理技术水平相关,还受化合物、催化剂、溶剂介质、化学性质等物化因素的控制,所表现出来的污染特征丰富多样。由此启发科学家们研究各种控制原理,包括反应、分离、转化、利用、储存、排放及其组合等,涉及物理、化学、生物、物化、生化等多学科及其交叉领域。对此,复杂工业废水的污染属性/溶液性质与各种控制原理的功能属性之间的吻合关系,在质量—能量/热量—电子的不同物理/化学尺度上的表现,将成为未来水污染控制技术支持水工业发展的理念方向。因此,本文尝试从污废水的产生机制、水溶液性质包括污废水溶液性质及其演变、水处理工艺发展等的原理思考出发,提出针对有毒/难降解复杂工业废水处理工艺的重要性,旨在寻求水工业发展与碳中和、经济效率、生活质量等相关的科学与技术目标的规划。 摘 要 从自然演化、人类活动、科学发展角度分析污废水的产生机制及其对天然水体溶液性质的影响,发现人类迁徙的城镇化以及工农业生产的效率约束导致污废水与天然径流之间的矛盾,使生态水体呈现出由地表纯净水向水质污染方向的功能转化,扰动了元素/化合物在地球表面或水体界面的离心与向心迁移的平衡,明确了水体界面或水圈作为物质地球循环中转站/转运站的原理机制。隐藏在各种水处理工艺原理中的物理、化学、物化、生化等丰富功能能够解决中转站中所积累的矛盾,所以,集合溶液性质与污废水处理工艺原理之间的对应关系及其技术应用将构成更加完备和潜在的水工业,所提出的水溶液性质概念同样适用于给水与纯净水的生产与管理。针对有毒/难降解的工业有机废水如煤化工行业焦化废水,在前端工艺清洁生产的基础上,需要把产品资源回收、性质互补利用、水量循环机制作为共性目标,把低能耗与物耗、关键污染物去除以及明确环境风险归趋作为污染控制工艺选择的依据,同时要求全过程产生低的二次污染如碳排放等。基于水溶液性质的改变及其过程演变的探究将拓宽水污染控制的工艺理论与技术边界。水污染控制与水环境保护相结合的水工业全过程追求技术、经济与社会目标的一致,争取得到绿色、低碳、循环等生态目标的响应,即生活、生产、生态“三位一体”的协调发展。
|